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ABSTRACT

If (X(t),tE ] is a weakly harmonizable process,
conditions on the process are found in order that X(t)

= E a (t)X(nTT/a) for a suitable a >0 and coeffi-
n 

2

cients an (t) , the series converging in L2 (P)-mean.

Consequently the process can be determined by sampling
at fixed intervals nh, n - 0,*l,... , h - T/a>0 . A
corresponding result is also obtained for a more general
Cramer class. To carry out this analysis, it is neces-
sary to use the properties of bimeasures. Some aspects
of the bimeasure theory and its distinction from the
Lebesgue theory are included. This is used essentially
for the analysis of harmonizable processes, and has in-
dependent interest.

I. INTRODUCTION. Let (0,Z,P) be a probability space

andL ) De the subspace of square integrable complex

valued random variables on 0 with means zero, i.e., p

XEL2(P) iff E(IX12 ) <- and E(X) - 0 where E(X)-

ioXdP , the expectation. A second order process

(X(t),tE1R} of interest in this paper is a mapping X:JR

L0 (P) and let r (s,t) - E(X(s)X-t) , rx(.,.) being

the covariance function. The types of processes con-

sidered here are classified according to the form of

the covariance function rx  of X . The process is

-1-
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said to be strongly (or Loeve, cf. [8]) harmonizable if

rx admits a representation as:xi

rx(s , t) - X (dX,dX') (1)

where Fx :RxR-C is a positive definite function of

bounded variation in the plane, and the integral is de-

fined in the standard Lebesgue sense. Here bounded var-

iation is understood in the sense of Vitali so that one

has
n nIF XIxl 6 sup( E OF Ix(Ai,B)•

i-1 j -1
Ai C RBj c R are intervals)<'s, (2)

where Fx(AB) denotes the increment, for A = (a,b] ,

B = (c,d] , given by p

F (A,B) - F (b,d) -F (b,c) -Fx(ad) +Fx(a,c)
This is a generalization of the classical notion of
(weak) stationarity since, by definition, the latter is

a process whose covariance r (-,•) is continuous andX
depends only on the difference s- t ("invariant" co-

variance under translations of the time axis R ) so
that r (s,t) - (s-t) and by Bochner's theorem the

X x
continuous positive definite function rx can be

uniquely expressed as:

fx (S-t) = GeGX ( d %) (3)

for a positive bounded nondecreasing function G

Thus (1) becomes (3) if FX  concentrates on the diago-

nal A - V so that G (X) - FxF(X,%')

If T:L0(P) -LO(P) is a bounded linear mapping,

and (Xt,tEPR is a stationary process, then in some

applications it is desired to consider the transformed

(e.g., filtered) process Yt - TXt, tEIR. [Here and

below Xt U X(t) are interchangeably written, for con-

venience.] However Yt is not stationary in most cases.

For instance, if T is a projection operator with a
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finite dimensional range, then the (Yt,tE]R} is strongly

harmonizable but not generally stationary. If T has

an infinite dimensional range (but T 0 identity), then

(Yt,tER} is generally not even strongly harmonizable.

It is weakly harmonizable in the sense that its covari-

ance function r y:(s,t) - E(YY ) is representable as:

ry (s,t) - JfleiS%'itX'Fy (dX,dX') , s,tEJR, (4)

where Fy :3xR-C is a positive definite function with U

finite Frichet variation. This means:

n n-
!IF 11Rx]R) = sup( E EaiajF (AiAj):Iai1igl,aiEC,y i-l j-l y

Ai c3 is an interval, i -

1,...,n n < .(5)

Evidently IIF l]RxR) S IF I (Rx 3R)" , usually with a
y y

strict first inequality when the second is infinite.

But then what is the meaning of the integral in (4)?

This is generally a nonabsolute (hence not a Lebesgue)

integral and is taken in the sense of Morse-Transue [9].

Some of its properties are essential for the following

work and hence some aspects of this theory of bimeasures

determined by such Fy I called the spectral measure of

the process, will be given in the next section. Because

of its use in other studies on the subject and because

of independent interest, the work presented here will

be somewhat more than what is needed for our present

purposes. It is useful to remark that if (Yt,tEJ]R is
any weakly harmonizable process and T is any bounded

linear mapping, then (TYt,tEI) is also weakly harmon- w

izable. These processes are particularly suited in ap-

plications because of such closure properties. Sec-

tion 3 contains a description of these processes, and

their integral representations. Since in applications -

it is difficult (or expensive) to observe a process
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CYt,tER) on all of R. , one often wants to sample it

preferably at equidistant points nh, n -0,*1,±2,...

and get a good approximation to the whole process in

such a way that there is no "aliasing," so that two

different processes shall not have the same realizations

at these points. Reasonably good sufficient conditions

on the spectral functions are obtained in order that

such sampling is possible for weakly harmonizable pro-

cesses. This requires a different technique than the

strongly harmonizable case. These results constitute

Section 4. Several related remarks are given in the

last section.
It will be seen that, once the representation the-

ory is embarked, one can include processes more general

than harmonizable classes. Such a generalization was

already introduced by Cramer [3]. Thus a process Z:JR

L2(P) is said to be of Cramer class, if the covari-

ance function rz  of Z can be expressed as:

r (s,t) (dk,d ') , (6)

where Fz :Rx1R-C is positive definite, and is of fi-

nite Vitali variation on each finite domain of R 2 ,

and Cgz(s,.),sER} is a class of Borel functions for

which the (Lebesgue) integral satisfies:

R4 Rgz (s, X'z (dXd%') <-, sEP . If gj(s,X) -

exp[isk} , and Fz is of finite variation on the whole 3

plane, then the Cramir class reduces to the strongly

harmonizable case. A sampling theorem for this class

is also obtained, and it extends an earlier result of

Piranashvili (11]. It is possible to extend this ma-

terial if the variations here are replaced by Fr4chet

variations, in these definitions. The existence of all

these processes is also discussed in Section 3 below.

Sampling theorems and their importance have been

noted in information and engineering applications. An
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early general and precise result for stationary processes

was obtained by Lloyd [7], and his result (the suffi-

ciency part) was extended in (14] for strongly harmoniz-

able processes, and another extension for the latter can

be found in [11]. The type of sampling theorems given

below is influenced by the point of view (but not the

methods which do not extend) of [11].

For a smooth sailing later on, the measure aspects

will now be discussed in some detail. However, a reader

interested in seeing the stochastic theory immediately,

and is willing to accept (temporarily) the properties of

bimeasures, can now go directly to Sections 3-5.

II. ASPECTS OF BIMEASURES AND THEIR INTEGRALS. A start-

ing point for the study of weakly harmonizable processes

is to define the integral in (4). This will emerge from

the general theory of C-bimeasures developed by Morse

and Transue (9] but now their general study has to be

slightly restricted. To see what is precisely needed,

a brief account of this development will be presented

here since it is not available in the existing papers.

It will supplement [19].

Let Sl'S2 be a pair of locally compact spaces and
X(Si) be the space of continuous complex functions on

S with compact supports, i - 1,2 The concept of a

4 C-bimeasure of [9] is as follows:

Definition 2.1. A complex valued bilinear mapping A

on the product space X(S )xX(S 2 ) is a C-bimeasure on

SlxS 2  if A(',v):X(Sl)-C and A(u,.):X(S 2)-C are

relatively bounded linear functionals for each uEX 'S),

vEX(S 2 ) . [Relatively bounded A(',v) means that if

K c S1  is compact and X(K) c X(Sl) is considered,

then A(. ,v):fl(K) -C is bounded.]

Since each such relatively bounded functional on x(S)



-6-

is uniquely representable by a signed Baire measure on P

Si , by the classical Riesz representation theorem and

then such a measure has a unique extension of being a

Radon measure by the standard theory of Bourbaki (1],
one refers to each such functional itself as a Radon meas-

ure, as is done in [9]. Given such a C-bimeasure A ,

one defines the integral of [9] as:

Definition 2.2. Let f:S 1 -C, g:S 2 - be Baire func-

tions and A be a C-bimeasure on SIXS2 . Then (f,g)

is said to be Morse-Transue (or MT-, cf. (91, p. 482)
integrable if (a) f is A(.,v)- and g is A(u,.)-

integrable for each uEX(SI),vEX(S 2 ) (the integrals are

denoted A(",v)(f) and A(u,.)(g) ), (b) the linear
functionals A(.,g):u *-- A(u,')(g), A(f,'):v -" A(.,v)(f)

are Radon measures, and (c) the integrals A(f,')(g)

and A(",g)(f) exist and are equal. This common value

is denoted by
A(f,g) - (MT) A(f,')(g) -AC ,g)(f). ()

S1 S2

The reason for condition (b) in this definition is

that A(-,-) should be definable for measurable (f,g)

not merely continuous ones. However, as a consequence

of his work on vector measures, Thomas ([17], p. 144)

has shown that this is actually redundant, and hence

(a) and (c) suffice in the definition. Although the

integrability concept of (7) is needed below, the

Bourbaki point of view of integration employed is some-
what inconvenient for our work. So an ensemble point

4 of view, due to Ylinen [19], will now be presented and

the results will be compared with the above.

Let (Oi2,Yi), i-1,2 , be a pair of measurable spaces

and C the usual complex plane. Then a mapping 0:

EIXE 2 -C is termed a bimeasure if 8(.,F) and 3(E,•)

*
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are a-additive for each EEE1 , and FEE2 , respectively.

The Vitali and Frichet variations of 8 are defined
exactly as in (2) and (5) where in (5) the sum now is

n n
replaced by i E Zaib" (AiB for disjoint collec-

i-li- j = A1B )
tions (Ai), (Bj} I  of , 2  It follows from classi-

cal theory (cf. (4], IV.10.2) that 11011(0I 2)<c

always, though 101(0 C2 2 ) is not necessarily finite.

Clearly 1[81!(A,B)S 18 J(AB) An integral relative to
8 is introduced as follows:

Definition 2.3. Let fi:Oi-.C, il,2 , be measurable

functions and O:EixE2 -C be a bimeasure. Then (fl'f2)

is 0-integrable if (a) for each EEE1 ,FEE2 ' f1  is

0(',F)- =nd f is O(E,.)-integrable in Lebesgue's

sense, so that f(0 1 ,):F- fl(wl)O(dw1 ,F) is a
1(21

complex measure on E2  and similarly Of (.,(2) is a
2

complex measure on E1 , and (b) f1  is Of2 2)-inte-

2
grable and f2  is f O(CI ,")-integrable (in the Lebesgue

sense) and

fl(w,)Of (dw 1 l 2 ) f2 (w2 )f 0(01
'dw2 )- :(fl 'f2 )d'

(8)
where the last symbol is, by definition, the comon value

of the other two.

The two integrability concepts introduced above are

related as follows. For simplicity, 0i - Si " R is

taken, but the argument is seen to be valid if R is

replaced by a a-compact Hausdorff space.

Theorem 2.4. Let 8 be the Borel a-algebra of R , and

S:RxB -C be a bimeasure. Then each pair fiEX (R), i-

* 1,2 is 8-integrable in the sense of Definitiun 2.3,

L
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and A:(fl,f2) ' ,j (fl,f 2)dB given by (8) defines a
R R

bounded C-bimeasure of Definition 2.1 on X(R)xXOR)

Moreover, if (f 1 ,f 2 ) is any $-integrable pair, it is
also MT-integrable (relative to A ) and the integrals

agree:

P (f f 2)d - (MT)l(f 1(f 2)dA(9

On the other hand, if A:X(R)xX(R)-C is a bounded (not
merely relatively bounded) C-bimeasure, then there ex-
ists a bimeasure O:BxB--C such that each pair (fl,f 2)

(from XR)xX R) , or more generally) of 8-integrable
functions, is MT-integrable relative to A and the re-

lation (9) holds.

Proof. In proving this result several properties of 8-

integrals established in [19] and those of MT-integrals

from [9] and (17] will be utilized. Indeed it is an

elaboration of ([19], Thin. 7.2) and complements some of

its statements.

Let 8:BxS - C be a bimeasure so that ,S 1 ORx]) <
and let (f,g) be 8-integrable. The definition of 8-
integrability implies that each pair of bounded Baire
functions is 8-integrable (cf. (19], p. 126). So, if

u,vEMR) , then (u,v) is 0-integrable and the mapping

A:(u,v) 1 j J (u,v)d8 is well defined and A is a
RR

bounded bilinear functional. In fact, IA(u,v)l %

:i0;: RR)juiI.ijvlj. where I" I. is the usual supremu
norm on XOR) . Thus A is a bounded C-bimeasure, by

Definition 2.1. Consequently A(-,v) and A(u,.) de-

fine bounded (complex) Radon measures on 8 , because

every a-additive function on the Baire a-algebra of a
a-compact space into a Banach space has a (bounded)

Radon extension onto its Borel a-algebra, by the stand-

ard measure theory. Using the same symbol A(",v) for

this extended measure, one has
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A(f,,)(v) A(-,v)(f) Sf(xW(dxE),vEcR)

- v(y)fO(RL,dy) , by (8) since

(f,v) is $-integrable, (10)

where the first equality obtains by definition of this

symbol (cf. [9]). Since f5(R,-) is also a regular
measure on 2 , (10) shows that A(f,.) on X(R) is a

bounded linear functional and hence defines a (complex)

Radon measure on 9 So (10) holds if v is replaced

by any Baire function g , provided the integral on the

right side exists. Since (fg) is 0-integrable, it
does exist by (8), and one has:

f f,g) dO -: g ( y ) f 8 0R, dy) -. g ( y ) A (f ,dy) =A (f , -) (g).

IRR R IL

A similar reasoning shows that A(.,g)(f) exists and

equals f (f,g)dO , so that A(f,-)(g) - A(.,g)(f) , S
RR

and (f,g) is MT-integrable.

For the last part, let A be a bounded C-bimeasure

on X( R)xX(R) Then a pair of bounded Baire functions
(f,g) is MT-integrable as a consequence of ([91, Thin. •
11.1), since A is a bounded C -bimeasure. By the

theory of (9], for each bounded Baire function f or

g , A(",g) and A(f,') determine (complex) bounded
Radon measures on S . If we define a function O :SxB-

C by S(E,F) - A(XE,XF) , then 0 is seen, after a

standard computation, to be a complex bimeasure (hence
bounded). If now A':(h,k) - jj (h,k)dO is defined for

R R
each pair of bounded Baire functions (h,k) , then by a

the first part A' is a C-bimeasure and A' (XE,XF) -

A(XE,XF) so that A'(u,v) - A(u,v) for u,v in X(R)

The extension procedure then shows that A' = A and
(9) holds. This completes the proof.
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Remark. There exist (unbounded) -bimeasures A on

X(R)xX(R) (or any noncompact a-compact space S in

place of R. ) such that it induces a complex bimeasure

0 , which is thus bounded, and for which (9) holds for

all $-integrable pairs (f,g) ; but there exists a A-in-

tegrable (not bounded) pair (h,k) which is not 0-inte-

grable, i.e., (8) does not hold. An example of this

phenomenon is given in ((191, Remark 7.3). Thus in the

above theorem, it is essential that A remains bounded

after it is extended from X(S1)xy((S 2) to more functions.

The integrability of a pair (f,g) relative to a

bimeasure 0 as in Definition 2.3, and hence for the

MT-integral (by the above theorem), is not absolute.

Indeed, the integrability of (f,g) for 8 does not

necessarily imply the same for (fXA,g'XB) , AE2IBEZ2

in contrast to the Lebesgue theory. This is seen from

the following example. We use the fact that the theo-

rem is true if F. is replaced by a a-compact set.

Example 2.5. Let the underlying spaces S1 = S Z

(the integers), E - P(Z) the power set. Let

a([m},(n}) - (jmj+I) "4  for InI+Im 0 0, =0 other-
wise, m,nEZ Now EZ (Im[+Inj) 4 <- so that for any

mn
E,FEP(Z) we can define S(E,F) , and extend it to P(Z
by additivity (with values in R.+ ). Then one can verify

that 101(Z,Z)<- , i.e., (2) holds. Let f(x) - g(x) -

x , xEZ . Then for each E C Z , we have

,(f(x)O(dx,(m)) - Z n(InI+Im ) "4  mEZ
E nEE-CO

Since the series is convergent, f is 0(.,F)-integrable
for each FEP(Z) , and

-4
lff(x)O(dx,F) - Z Zn(lml+tnl) "

E nEE-(0} mEF

Similarly :Fg(y)Ia(E,dy) exists. Also for each F c S2 -

z,



fO(SIF) - .f(x)O(dx,F) Z E n(Iml+Inl) 4 -0

mEF nZ-(0]

and likewise 0g(ES 2) -0 for each E c S1 - Z . Hence
(fg) is 0-integrable and Sl S2 (f,g)d8 - 0

Now let A-- B - . Since f (AF) .f(x)O(dx,F)
A

E E n(n+ImI )-4 and nZ 4 so
mEF nl' m-1 n-i (m+n) 4

.Bg(y)fa(A,dy) does not exist. But f (A,.) -

XAfl(SI,) . Hence JS2 (XB9)(y)xAf (Sl,dY) does not

exist. Thus (XAf,XBg) is not integrable in the sense

of Definition 2.3 even though (f,g) is.
Now by Theorem 2.4, if A is the induced C-bimeas-

ure by a , then (f,g) is also MT-integrable and its
integral vanishes by (9). But again (xAf,XBg) is not
MT-integrable as follows from a similar computation.

Thus the pathology is present also for bounded C-bimeas-

ures.

To eliminate this unpleasant behavior, we shall now
strengthen the definition of integrability relative to
a bimeasure in such a way that all bounded functions are

again integrable. Thus we shall restrict the (unbounded)

set of integrable pairs of functions, but the bimeasure

itself is left relatively unrestricted. However, it may
be of interest to note that !10:',!RxR) < 1$S 1RxR) - * can
happen even if 0 is a positive definite bimeasure. 5

Counterexamples illustrating these points are not ob-
vious. Using a modification of an example due to H.
Helson and D. Lowdenslager, an example was discussed in
[13]. It uses a deep result, due to S. Bochner, on the
planar extension of the F. and M. Riesz theorem on abso-
lute continuity of measures. A general counterexample

can also be obtained by a nontrivial modification of
that of ([2], p. 840) to show that 1j8S',i(.R)' ISIjRxR)
-- holds when S is a bimeasure which is not
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necessarily positive definite. For brevity, the details

of this will not be included here.

To avoid the troubles of Example 2.5, let us intro-

duce the following:

Definition 2.6. Let (i,.i) be measurable spaces,
fi :0i-. C be measurable functions, i - 1,2 . If 0:

E 1E2-'C is a bimeasure, then the pair (fl,f2 ) will
be termed strictly $-integrable if:

(a) f1  is 0(.,F)- and f2  is O(E,.)-integrable

for each EEZ1 ,FEZ2 , so that f O(E,.): 2 -C and
Of (,F):ElC given by fI (E,B) = .Efl(wl) (dl,B)

2 1
BEE2 , and Of (A F) - r'Ff2 (w2 )(A,dw 2 ) , AEEI , are p

complex measures for each EEZ1 ,FEE2 , and
(b) f1  is 2 (.,F)-integrable for each FEE2 ,

1 f~22
and f2  is f I(E,.)-integrable for each EEZ1 , and

Efl(wl)Of (dwl,F) - .1%Ff2(w2)f O(E,dw2) holds for
2 1

EEZEFEZ2 . When these conditions obtain, the integral
is denoted by

S (fl'f 2 )dO = £Efl'xFf 2 )dO - fd

EF SE 2
(12)

It is not difficult to verify that each strictly

0-integrable pair is 0-integrable in the sense of Defi-

nition 2.3 with the same value. If i:(A,B) .-

.S s (XAflXBf 2 )dO , AEZ1 ,BEZ2 and (flf 2 ) is
S1 2
strictly $-integrable, then 4 is a bimeasure on ElXE2
since (4 -fl,f 2 )

(A,B) - Afl(Wl)Sf (dwl,B) , AEEI,BEr2
jA ~22

It may be easily seen that the results on 0-inte-

grability given in ([19], Thins. 5.4 and 5.6, Corol. 5.7)
are also valid for strict $-integrals. In particular,



-13- .

each bounded measurable pair (f,g) is always strictly
0-integrable. The following "change of variables" for-
mula holds:

Theorem 2.7. Let (f,g) be strictly $-integrable on
f(Oi,Ei),i'l,2} for a bimeasure s on EI×E 2 * Let
L(A, A) 112 (xAf,XBg)d8 , AEE1,BEE 2  If h:O - C

k: 2  are bounded measurable functions, then the fol-
lowing formula holds: (again .L - f,g)

M frg (13: r* (fh,gk)dO - " J*(h,k)d& , AEEI,BEZ2 . (13)
AB AB

Proof. As noted above, 4 is a bimeasure on E1xE 9

Define a linear functional k. on the space of scalar
measures ca( 2, E2) as:

SF(2)X(dw2)  FEE2 I XEca(C22 ,E2)where k is given in the statement. By the structure

of measurable functions there is a sequence of step
functions kn -k pointwise, Ikn Iik , and so let

n

kn -E bln, n Then for each EEZ, , one has

gk(EF) - F (gk)( 2)O(E,dw2) , by definition,

- lim (gkn )(w2)0(Edw2 ) , by the dominated con-
n- F

vergence,
n n

- lim E b (E,FIB )
n- j1 j g j

- lim k (W (E,dw2)n- Fk(2)ag 2

k F 2g(E,dw2 ) - (Sg(E,))F 'w)a 2) '

Hence using the standard theory ([41, p. 180),

J(gk)(,x,2 )f3 (E,dw2 ) - 'i( 4' &(w2)fY (E,dw2 ))
F H

-k.j(f (Wl)g (dwI .))

E 9
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- jf(wl)k (O (dw1 ")) , by ([4],

E g
p. 324),

- :f(Wl)Ogk(dWl,F)E

This shows that (f,gk) is strictly $-integrable and

further

J'J' (f,gk)d8 = k.(p(E,.)) I .k(w2 )6L (E,dw2) = ak(E,F) . (14)
EF. F

By a similar argument, one shows that (fh,gk) is

strictly 8-integrable and
j J (fhgk)dO - Sh(wl)ak(dwlF) F*(h 'k )d6.

This is (13) and the proof is complete.

The corresponding statement for the bounded C-bi-
measures and MT-integration may be stated as follows:

Theorem 2.8. Let (Sisi), i-,2 be a-compact Borelian

spaces, and f,g be 21 ,62-measurable scalar functions.

Let A be a bounded C-bimeasure on SIxS2 . Then the
pairs (fh,gk) are MT-intelrable relative to A for

all bounded scalar Baire functions hk on S1 ,S2 , iff

(XAf,)Bg) are MT-integrable for all AER 1 and BES2
The proof of one direction is immediate, and the

converse is similar to the preceding result using the

interplay (of Bourbaki's) between the bounded linear

functionals and the (bounded) Radon measures. The de-

tails are omitted.

The following consequence of Theorem 2.7 will be

noted for applications.

Corollary 2.9. Let (Siui), 1-1,2 be measurable spaces

and 0 be a bimeasure on aI B2  into C Then one

has:

(i) A pair (f,g) is strictly 3-intearable iff

the pair (IfJ,IgI) is.

(ii) If the fi:Si-C are measurable, i - 1,2

and If11!g IfI , If2 1 Ig and (f,g) is strictly
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8-integrable, then so is (fl,f 2 ) .
(iii) Lf (f,g) is strictly 8-integrable, f ng n

are sequences of measurable functions, Ifn I If 1
I gnl I 8 an19 d fn-fd f gn pointwise, then )
is strictly 0-integrable and

(,g)dO - lim lim "*m , gn)dO , EEB I ,FEB2 , (15)

EF m-s n- EF

and similarly if m,n are interchanged in the limit.

Proof. (i) and-(ii) are immediate. Regarding (iii),

by (ii) (f,j) is strictly 0-integrable. Further,

(f,*" ) Ef (x)8 -(dx'F)

EF E

lim: fn (x)8o(dx,F)
n--" E

- limj '(y)f 8 (E,dy)
n- F n

- lim limj gm(y)f 8 (E,dy)
n- m- F n

n . . n
- im, limJ' j*(f'g)dO

n m E F

lim lim.1. (fn,g)dO , by a similar argu-
m- n- E F

ment.

This is (15), and the result follows.

In exactly the same manner, if the (xAf,XBg) are

MT-integrable relative to a C-bimeasure A:X(S )X(S2)

C , then the above three statements hold for the MT-in-

tegrals, using Theorem 2.8.

These results will be sufficient to present the

work on harmonizable processes and their extensions to

Cramir classes. w

III. INTEGRAL REPRESENTATIONS OF PROCESSES. The pre-

ceding analysis justifies the integration in (4) and

one uses the strict a- (or F - in (4)) integrability.
y

In what follows only this strict integral will be used
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and the word "strict" will be dropped hereafter since no

other concepts will be employed. In (4), the integrand

is a bounded continuous function. If 0 is restricted

to functions with Vitali variation finite, then the
"strict" and the "ordinary" (those in the sense of Defi-

nitions 2.2 and 2.3) integrals coincide.

The purpose of this section is to show that every

weakly harmonizable process admits an integral repre-

sentation; in fact to show that it is the Fourier trans-

form of an Lg(P)-valued (or a stochastic) measure. Let

us present the result in a form which applies to the

Cramer class also, extending the work of ([5], Sec. 4.4).

Let r'MAR-C be a positive definite continuous

function. It is then a covariance function in the sense

that there exists a probability space and a stochastic
process Cxt,tEIR} on it with the given r as its co-

variance function. To see this let t , ... ,tn  be n

points from R. , and note that (r(ti,tj),lri,jfn) is

a positive definite matrix for each n . Let Ft i""'tn

be a Gaussian d.f. with mean zero, and this matrix as

its covariance matrix. Such d.f.'s clearly exist on Rn

for each nal . The family of all these d.f.'s has

the consistency property, i.e., (i) limF ,t,(x"Xn)
x -0 n
n

=F t~ ... , . n i n

= F Fti,...,tn (Xl...,x n  for any permutation (i,...,in)

of (1,...,n) . It then follows from a fundamental re-

sult of Kolmogorov (and Bochner) that there exists a

4 probability space (O,E,P) , and a real process CXttER}
on it such that P[Xt <x1,... ,Xt<Xn] - Ftl..., t(xV..,xn)

Here the finite dimensional d.f. 's are the given F's

so that it is Gaussian and hence the covariance function
is the given r and mean function is zero. (For a

P
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S

proof of this statement and related material on the ex-

istence of such processes, see [12], Sec. 1.3.) This

result also implies that the covariance functions given

by (1), (4) or (6) are in fact such functions of con-

crete stochastic processes and not some fictitious ob- 6

jects, and the theory thereby gains importance for ap-

plications. Consequently, if Fz :PRxR-C is a positive

definite function which is only of locally finite

Frechet variation in the sense that on each compact U

rectangle IxI (=xR , Fz  satisfies hF ;(IxI) < soz z
that (5) holds on IxI (but :IF zI RXR) - is possi-

ble), let Cgz(s,-),sE3R1 be a family of Baire functions

on R -C . Suppose that

i gz (s ,k )gz (S ,X')F z(d , d), ) <- sE , (16)

where the symbol denotes the strict integral relative to

the (local) bimeasure F z  For instance each gz(s,.)
can have compact supports. It is clear how the inte-

gration theory of the preceding section can be adapted

to this situation with a modification of the classical

methods (cf. e.g., (1]). If rz  is defined, for a

family of Fz-integrable Baire functions (g(s,-),sE3R,

as

rz (S, t ) - gz (s , x) ztK Fz (d, ,d '<- (17)

RR

then it is a covariance function. The corresponding
process (Zt,tEM) with this rz  as its covariance will

be called weakly of Cramir class. This is the most gen-
eral nonstationary family that can be studied with these

methods. If gz (sk) - ei sk , then this reduces to the

weakly harmonizable case, provided the Fz  is a bi-

measure on RxR (i.e., not merely locally).

To present the general representation, it is also
necessary to recall the integral of Dunford and Schwartz
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([41, Sec. IV.10) of a scalar function relative to a

vector measure in the form needed here.

Definition 3.1. Let OR,R) be the Borelian line and

(.,E,P) be a probability space. If L2 (P) is the

usual Hilbert space on (0,F,P) , then a mapping Z:8-

L2 (P) which is a-additive in the norm topology of

L2 (P) is called a vector measure, and a stochastic

measure if also E(Z(A)) - 0 for each AE8 . If fn -

ke
n anx n AnEO is a step function, then, as usual, we

i~i i i n i

let gB f ndZ - Z anz(AinB) , BEB (which is seen to

4be uniquely defined) and if fn -f pointwise, and

gnnl} c L 24(P ) is a Cauchy sequence for each BE,
nB

then the unique limit gB = lim (f dZ is denoted 'fdZ
I En BSn -,w B B

= lim f ndZ , BE8 , called the Dunford-Schwartz (or D-S)
n-,, B

integral.
This concept is a specialized form (to L2(P) ) of

that given in ([4], IV.10.7) where it is shown that the
integral is uniquely defined, does not depend on the

sequence used, and is linear. Taking Z() as the sto-

chastic measure, the integral was defined differently

in [31, [81 and others, but it can be seen to be a spe-

cialized version of the above definition. If Z:B(K) -
4 L2 (P) is a stochastic measure for each compact K c3R

(8(K) is the trace a-algebra of 9 on K ), so that

Z will be a stochastic measure on the 6-ring 0 C B

of bounded Borel sets, then again the D-S integration
* extends to this "local" situation with only simple modi-

fications. (A special development to this case was given
by Cramer in [2] to use it with (6); and a similar result

holds with (17).)

We can now present a general integral representation

for processes whose covariance is of the type (1), (4),

.
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(6) or (17). This is essential for the sampling theory

of the next section and the interplay between the D-S

integral and the strict integral of Definition 2.6 plays

an important role in the present work.

Theorem 3.2. Let CXt,tE]R) be a second order process S

on (0,E,P) , weakly of Cramir class, in the sense that

E(Xt) -0 and its covariance function r is repre-

sentable by (17) relative to a positive definite local

bimeasure Fx  and a family of functions (gx(s,.),sE1R )

which are strictly F -interable. Then there exists ax2
stochastic measure Zx :8 0 -*L (P) such that

(i) E(Z (A)Zx(B)) = Fx(A,B) , A,BEG0

(ii) x(t) - "1gx(t,),)Zx(% ER(8

where B0 is the 6-ring of bounded Borel sets of R. ,

and the integral on 80 in (18) is in the D-S sense.

If Fx  is a bimeasure on le, then 20 can be replaced

by the Borel a-algebra B and jJ S x(SII)gx(s, XFx(dX,dk')
JRR

< SER , for any bounded Baire family (gx(s,.) , sER].

Conversely, if [X(t),tER]R is a process defined by

(18) for a class Cgx(s,.),sE1R] of D-S integrable func-
tions, then CXt,tEIR is weakly of Cramdr class, and

the gx (s,-)'s are F x - integrable strictly, where

F. ,given by (i). is (locally) a bimeasure on 0
the 6-ring of bounded Borel sets of R. . S

The special case of importance here is when the

process is weakly harmonizable, or of Cramdr class (6).

In the latter case Fx  is of finite Vitali variation

on each compact rectangle and the integral with Fx  is

a planar Lebesgue-Stieltjes integral. In this event,

the result reduces to the representation established by

Cramdr himself in (3]. The proof of the above theorem

is an extension of [3] using the theory of bimeasures

given in the preceding section. The details have been
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spelled out in ((13], Sec. 3), and will not be repro-

duced here. Let us state the harmonizable case sepa-

rately for ready reference and to use it in Section IV.

Theorem 3.3. Let [Xt,tE1.] be a process with E(Xt) =

0 and E(IXtI-)SKO<m , tEP. . Then it is weakly har-

monizable relative to a positive definite bimeasure Fx
on BxB , iff there exists a stochastic measure ZX:8-

L (P) such that E(Zx (A)x(B)) - F (AB) , A,BEB , andx x xII
xt - eLtXZx(d) , tER, (19)

where the integral is in the D-S sense. The process is

stronxly harmonizable if Fx , related to Z, of (19),
is of finite Vitali variation, IFxI P.)<- . In either p

case Xt is uniformly continuous in t with the norm
2topology of the range space L (P)

The weakly harmonizable processes were also called

"V-bounded" by S. Bochner who was the first to introduce

them into the stochastic theory in 1954, and later (in-

dependently) were again defined by Yu. A. Rozanov in (16]

with an indication of the need for integration akin to

Definition 2.6. A comparison (and equivalence) of these

concepts and other characterizations are given in [13].

The representation in this case has also been obtained

by Niemi ([10], p. 35) by a slightly different method.

But he was the first to recognize the use of MT inte-

gration in this study with V-boundedness.
If in (6) or (17) the function Fx concentrates on

the diagonal of IR2 , then one has F x(,X') = 8xx IG(X)
[6 x01is the Kronecker delta] and so

rx (st) - W1%gx(sX)gx(tX )Gx (dh) (20)

Processes for which rx has this special property are

said to be of Karhunen class. If gx (s,k) - eis% then

this reduces to the (weakly) stationary case. Thus a

harmonizable Karhunen class is simply stationary. If
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this happens in (18) and (19), the stochastic measure

has the additional property of orthogonal increments,
i.e., E(Zx(A)Zx(B)) = Gx(AnB) . In all these cases Fx

(or Gx ) the positive definite bimeasure representing

rx  is called the spectral measure of the process. This
function plays an important role in the sampling results

of the next section. Its significance for this problem
is further pointed out in the last section. Theorem 3.2

for the Karhunen case becomes simpler, and this is given

in ([5], p. 201).

IV. SAMPLING THEOREMS. Since it may be costly or dif-

ficult to observe the whole process, it is desirable to u
sample the observations at fixed intervals. However, by
regarding our process as a curve in the Hilbert space
L2(P) , it is clear that two essentially different curves

(or processes) can pass through a fixed set of equidis-
tant points. This is usually called the "aliasing" prob-

lem and it is desirable to avoid this by choosing the
spacing unit carefully. Thus the sampling problem is to

find conditions on the characteristics (or the spectral

function) governing the process such that it can be de-

termined from a countable set of observations. In other

words, if L(X) - spXt,tER] c L2 (P) , and M(X) -

spt X,t i are points at which the process is to be ob-

served] , then L(X) = M(X) . If tn - *hn where h >0

is the unit to be chosen, then it is called periodic
sampling, and if (tn,nkl] is a bounded infinite set of
distinct values, then it is nonperiodic sampling.

For the classes considered in the preceding section,

the process characteristic is the spectral function by
which one classifies the process. So the conditions

should be on such a function. For the periodic sampling
of weakly harmonizable processes, the following general
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result, called a sampling theorem, holds:

Theorem 4.1. Let CXt,tE]R} be a weakly harmonizable

process with zero means and a spectral function Fx  re-

lated by (4). Given e >0 , there exists a bounded

Borel set A (-A, ) cR such that
Pf F (dX,d%') < c/4 Ac MR-AAc Ac x

and if a0 = diameter of A , then for any a>a one

has (with IX t112 - E(IXt, 2) ) an n(-n ) such that
''t

1X(t) -Xn (t)I 1 C(t)a[(a- 0 )n] +e , (21)

n
where Xn(t) - E ak(t;a)X(kTT/m) , tE]R, and 0< C(t)<m

kw-n

is bounded for t in bounded-sets. The coefficients

ak's may be taken to be:

asin (ta -kT (22)ak(t ;a) " (akr

If the spectral function Fx  has a bounded support,

then we can set e - 0 in (21).

Proof. Since CXt,tER) is weakly harmonizable, there

is a stochastic measure Z:8 -L2 (P) satisfying (19),

and such that Fx (A,B) - E(Z (A)Zff(B)) . AlsoXx x

, _ n [ )Fx(d ,d ,)-[.n,n) (\)Z (dX)I2

1,.Z x (d using
R

([41 ,IV.10.10)

= F x(d%,dX') . (23)
R3R

Hence given e >0 , there exists no  (-n 0 (s) ) such

that nz no

f (Fx(d-,dX') -,x (d%)X) ,d <c 2 /256
Rj [-n,n) -n,x (24)
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This may be written alternately in the following form

which also obtains from the fact that 1 -Xn,n) 0

boundedly and the same theorem of (4] as in (23) applies:

I IFx(dk,dX) = J'(l -XA (X))Zx(dX)112 = j1Zx(Ac) 12 0

Ac Ac  . n

n n (24')

where An - (-n,n) so that for A one has '!Z (Ac)Il
n n0

< e/16 by (24'). (We can actually choose Z 1ii, (ACo) <

e/4 by (6], Thm. 3.5 here.) That this fact holds

for vector measure more generally is proved in ([6],

Thin. 3.5).

Consider

X(t) = SeitkZ(dX) = e itkZ x(d%) + J" eitZ x(dX)

SAno AcnO
= Xl(t) +X 2 (t) (say). (25)

Writing Z Zx(An .) and 2 = Zx(Ac and not-

ing that these are again stochastic measures, it fol-

lows that X and X2  are also weakly harmonizable.

Moreover,

'IX(t)-X1 (t)ll - ,Ix 2 (t)l1 - I j eit Z (dl 1i l ; Z i (Ac 0Ac  x xno

4 supiiZ (E) jj S/4 , by ((4],

Ac X

IV.10.4(b)) (cf. also [6],

Thm. 3.5). (26)

Since, if ft(X) - eitX, ft() is an entire

function of exponential type (with finite exponent [ -1

here]), the classical results on approximation imply

(cf. [18], Sec. 4.3; these are given in the form needed
by Piranashvili (10], but the present one is simply the

classical Kotel'nikov-Shannon formula, cf. [5], p. 204)

with z - x+i u
I and a0 Xn o , for any a > 0 : na1o,

W
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izX n krr s in (z- O) L0  (27)
e E expfik - *k- < (27)

k--n a (z--) i 0)

where L0(z) is finite for z in bounded domains in

the complex plane. (A more general form of this esti-

mate for any entire function of finite exponential type

appears in the proof of the next result.) Define

Xn(t) by:

nb ,_ sin a(t- kr)
(X W E x()- (28)Xno0 k--n% a (t- T

Taking ak(t;c) as in (22), it is asserted that this

X n (t)-process satisfies (21), ;i T,)1o
0

For, let Sn (z) be the nonnegative left side

quantity of (27). Then

it% n i k

;IX(t)-X n(t) : (e - : e i a"t;c))
A n( k = n () k 1l(d X ) ,j +

jX2 (t)-X 2 ,n (t) , using (25) and (28)

with X2,n in place of Xno if X
0 0

is replaced by X2

! 9n/ (t);;'zx;(Ani) +jjX2(t)l +iJX2( )0I , by
0 0 '0

the triangle inequality and ((4], IV.10.7)LO (t )=

O re_)niZxj () + + jIX2  (t)l , by (26)

and (27). (29)

Now consider,
n/

!IX2,n' (t)l! - Z a k (t; )X2(-,)

I
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nO iX~kT" lf( Z e
R k--n'

0n kT

S sup e ak(t;a)Ii !

XEIR k=-nb kl--2) CR)

L+ L(t)a ]

[ ( +_ , by (27) and (26)
0 _ 2L (t)a

[ (+l.]j. _ , i n- k ( 0 )V"70 V
00

Substituting this in (29) one gets (21) with C(t)
Lo(t) llz jll ) .

If the support of Fx  is enclosable in a compact

rectangle, then for a suitable no , it will be in

A nxA n and hence X2 (t) - 0 Thus e - 0 is possi-

ble in the above estimates. This completes the proof.

Remark. If the process is strongly harmonizable, then

Fx has finite Vitali variation and the analysis proceeds

with Lebesgue integration, and the result car b deduce

from (11]. However, in the weakly harmonizabie case,

this is not possible and the vector (or D-S) integration 0

in L2 (P) and its relation with the MT-integration of
bimeasures must play a central role.

To illuminate these ideas further, we present an-
other (periodic) sampling theorem for some Cramr class
processes. Recall that a process (Xt,tE]R is of weakly
Cramir class if it has means zero and its covariance
function rx  admits a representation as (17) relative
to a spectral measure function Fx , of local finite

Frichet variation and a family Cgx(S,.),sE]R) of F -

integrable complex functions. Then by Theorem 3.2, the

Xt process admits an integral representation (18) re-

lative to a a-additive Z:0 "L2 (P) ' the integral being

(an extended) one of D-S type. In a related terminology

CR,2,2 0 ,Z) becomes a "semi-standard quasi-measure space"

. _ -, - a , ,,, , W -, u ,,,, -, | ,, ,,, nm m ne u m nna --m m ud / I -a au ul l~ a m -l i i n n n m n . . . .. . .~n , n . , .. -
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I (cf. [6], p. 210) and the integral becomes the same vec-

tor integral of [6]. For the following, the g(s,%)'s

will be assumed to satisfy two growth and smoothness

conditions:

(i) each g(.,%) can be extended to be an entire _
function, XE R

(ii) if Cn () L-n(Z n) then c* (x)

limsup (IC(X)]i1/n ,a0 <- ,and there is an 9
n-wo

integer m mO , such that

jg(z,X)[ gL(x)(l+lzlm)expfc*(X)IylI , z-x+iy

In the preceding case g(t,k) = eitX and this

satisfies (i) automatically. Regarding (ii), c *() -

lXI in that case. So there is such a a < -  only if

the X's vary in a compact set and this will obtain if

Fx  has a bounded support. In the present case, if the
Fx  is not restricted, then the g(s,.) should have com-
pact supports. This is reasonable in the Cramir class,

and is one of the reasons for this generalization. With-

in such a framework, the following (periodic) sampling

theorem holds:

Theorem 4.2. Let (X(t),tER} be of weakly Cramdr class
with its A-family satisfying the growth conditions (i)

and (ii) above. Suppose that L(') in (ii) is strictly
intexrable relative to the spectral measure F . Then

for each a >a 0  if Xn(t) is given by:

Xn (t) _ n X(.) sin(at-kT)sinqO(t-kr/a) (30)k--n ! (mt-kp)q(t-kr/m)

where qzm , a <(a-a0 )/q , we have for a constant
co(t,m,q ) -4- :

(IX(t) - Xn(0)11 r Co(t,cL,q)/n (31)

In other words [X(ki/a),k-O,*l,±2,... spans the same

$S
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space as (X(t),tER .

Proof. The idea of proof is similar to that of the above

theorem, and we can quickly sketch the argument. The

key again is the approximation result from function

theory. This is based on a theorem of M. L. Cartwright

(cf. (18], p. 186) as modified in Piranashvili ([11],

p. 648). By this work, one has

n qO ~IngzkEglj sin (az-kr) s inq (z -kTT/a)

k=-n a(az -krr ) 0 q (z-k CT/a)

L(X)L (z))1 Q =_)q + (j)q-m (32)

q(a-q)n n n

where L(.) is as in (ii) of the growth condition and

Lq (z) is a positive finite number for z in bounded

sets of the complex plane. So if Xn (t) is defined as in

(30), and Cn (t) -X(t) -Xn (t) , then, if Ivn(Z,)I is the

left side quantity, L(X)hn (a,z,q) the right side,of (32)
Cn(t) - SRVn(tX)Z(dX)

and Ivn(t,%)I sL(X).hn (a,tq) which by hypothesis is
Fx-integrable and which in turn implies that L() is

integrable for Z(.) Hence by ([6], Thin. 6.11(e)),

one has

11n t jj: 4sup[ IjSL( )'h n (a,t ,q)Z (dk)!! :AE8)
A

!C*t ( (c)q+()q-m] . sup( I.'L (k )Z (dx) :AEIB}
q (a-a-q)n n n A SM .t q a a q a= q-m] s

- M0 ^ n"tn) +F) ] (say). (33)

The right side -0 as n- for t in bounded sets,

a >a 0  .*Setting C0 (t,a,q) as the coefficient of n "  0
in (33), (31) results and completes the proof.

Without doubt, this result can be extended to get

an c-approximation by relaxing some conditions, to match

with the above theorem. We shall not go into such a

formulation here. Instead some related remarks will be
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given in the final section.

V. FINAL REMARKS. 1. For stationary processes, the

spectral measure F is real (and positive) and a more pre-

cise result can be obtained. A characterization for a

periodic sampling theorem is obtained by S. P. Lloyd (7]

involving only the support of Fx namely its translates

should be disjoint when the translation is suitably re-

q lated to the sampling interval h( -nh) . An extension

of that result for strongly harmonizable processes can be

formulated. The sufficiency of it has been given in (14].

It was stated there without proof that the converse also

holds. This was clearly an oversight and tl'e problem is

still open, i.e., if a periodic sampling theorem holds for

a (weakly or strongly) harmonizable process, describe the

precise property of the support of the spectral measure.

For this reason in the preceding section only sufficient

conditions are considered which however are the most use-

ful ones for applications. In (11], independently of (14],

the method based on approximation theory, of functions of

* a real variable, was presented. The underlying ideas ex-

tend, as shown here, though the method of proof of (11]

does not generalize. The vector integration, and the

bimeasure theory are useful in this extension.

2. As the above discussion indicates, historically

the philosophy of sampling theorms for processes is to

analyze the behavior of the spectral function where it is

available. However, one cannot always consider processes

having spectral functions as in Section 1. Then this

type of sampling theory becomes meaningless. Instead one

can consider some approximations from a different point
of view. For instance most second order processes admit

their covariance representation, called "generalized
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triangular covariances," extending (20) in which JR is

replaced by a more complicated set. This may be stated

as follows. Let T be a subset of R (-R is possible)

and r( ,) :TxT - C be a positive definite mapping. Con-

sider a space H0 c TC called the reproducing kernel in-
n

ner product space: fEH 0  iff f - E cir(si,.) , ciEC

m i-i
If also g- z d r(',tj) EH0 , then introduce the inner pro-

n m
duct <fg> - E Z c r(si'tj) . This is well-definedi-I J-1
and is an inner product. If Ur is the closure of H0
in this inner product, then Xr is called the Aronszain

4 space. This is separable if for instance r satisfies a P

smoothness condition. Let (JR, B) be the usual Borelian

line, Q - JRx , E - P (Z) Then the following re-

sult holds:

Proposition 5.1. Let r :TxT - be a covariance

function such that the associated Aronszain space 9 r is

separable. If (0,E) is as above, then there exists a
Lebesxue-Stielties a-finite measure v on E and a

measurable family of complex functions [*(t,.), tET}

such that

r(s,t) - "*(s,w)tT,w)v(dw) , s,tET (34)

The actual structure of r's and v as well as the

proof of this result are given in ((15], Sec. 6.2) . But

the *-functions do not generally have any of the proper-

ties of the g-functions of the last section. While v

can be regarded as a "generalized spectral measure" of
r , it is hard to relate these to those of the process

X , as in the preceding theory. This is why the consid-

erations there were given to a subclass.

3. One can consider nonperiodic sampling theorems
also. Let X(t) be of weakly Cramir class relative to

- " m W . b -m • • ms me mmm
- -
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a family (g(s,.),sE]R so that (17) holds. Suppose

that g(.,X) ,kER , is analytic and g (n)(s,) is

strictly F - integrable for each sEIR and n21 where

Fx  is the spectral measure of X(t)'s. This implies

through (15) and ([4], Thm. IV.10.8) that (X(t),tE]R is

a second order analytic random function since the co-

variance rx(.,.) is infinitely differentiable. Using

the fact that an analytic function is uniquely determ-

ined if it is known at a countable sequence of points

which tend to a limit point, one can deduce the sampling

theorem of the following type as in ([14], p. 68): If

Ctn ,ntl) c IR is an infinite bounded set of distinct

points, and X(t n) is known at each "time" tn I where

the g(s,.)-set satisfies the smoothness conditions noted

above, then the samples (X(tn),n:11 also determine the

process. A proof of this statement will be omitted since

it can be constructed from the above remarks easily.

4. It is possible, in many cases, to put con-

ditions on the covariance function rx of a process X

such that it admits a Mercer type series expansion. This

in turn easily implies an orthogonal series expansion of
Qm

X(t) - Z a (t)fn , where (f nkl) is an uncorrelated
n -I n

sequence of random variables each with mean zero and unit
variance. The partial sums of the series can be used as

the "sampling sequences." Here the problem of computing

the "coefficient functions" a n () is nontrivial, and
this approach has other drawbacks. We therefore do not

consider this set in the general format of the sampling

theory of random processes, which is based on the

Kotel'nikov-Shannon type series. Such expansions,

however, have utility for other problems.

5. Finally, formulas (1) and (3) show, in case
Fx,Gx  are absolutely continuous, that F' and G'

I
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are Fourier transforms rx of rx  and so one may seek

conditions on these to obtain some "sampling theorems."

These are very special assumptions and for (4) or (7) no
such assumption is meaningful since the respective inte-

grals are not in Lebesgue's sense. From all these consid-

erations, it appears that the theory of bimeasures plays

a vital part for processes of the type having spectral
functions in IR2 , i.e., for the classes of processes

treated in this paper.
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